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We study the quantum-mechanical version of a model proposed by Peyrard and Bishop [Phys. Rev.
Lett. 62, 2755 (1989)] to describe the denaturation phenomenon on the DNA double helix. We charac-
terize denaturation as a phase transition leading to the restoration of the translational invariance of the
system. The problem is approached via a modified perturbative theory which incorporates also nonper-
turbative effects. These are accounted by an auxiliary random variable u describing the equilibrium po-
sitions of the constituting particles. The criticality of the model is revealed by analyzing equations in-
volving the first and second cumulants of the u-distribution function. As a consequence, an analytical
expression for the critical temperature T, is obtained as a function of all model parameters.

PACS number(s): 87.10.+e, 64.70.Dv, 63.20.Hp

I. INTRODUCTION

Physical models describing the DNA molecule as a
statistical-mechanics system of interacting particles
(atoms and/or molecules) have been proposed and ana-
lyzed in order to characterize the nature of the melting of
its hydrogen bonds [1,2]. These H bonds connect each
nucleotide in one of the two strands of the DNA helix to
its “‘complementary” nucleotide on the other strand. Ex-
periments indicate that this transition, also known as
“DNA denaturation,” occurs at temperatures ranging be-
tween 350 and 400 K depending on the specific sequence
of nucleotides that compose the molecule [3].

An extensive study has been carried out by Prohovsky
and collaborators [1] based on a self-consistent phonon
approximation to treat some realistic models with
Morse-like potentials modeling the H bonds. Their
analysis indicates that a certain correlation function
presents an instability at a finite temperature T, which is
identified as the critical temperature for melting.

More recently, Peyrard and Bishop [2] presented a
simplified model to describe the DNA molecule where ir-
relevant degrees of freedom for purposes of studying the
phenomenon of denaturation are a priori eliminated. In
this model, harmonic interactions are considered between
particles on the same strand while the H bonds are also
modeled by Morse potentials. Each of these particles
represents a nucleotide. The classical statistical mecha-
nism of the model has been explicitly solved by the au-
thors using the transfer-matrix technique. Also in this
case there are strong indications that the corresponding
correlation function loses stability as the temperature ap-
proaches T.

Here we address the quantum-statistical-mechanics
version of the Peyrard-Bishop model. Our motivation in
studying the quantum model is to investigate the role
played by the mass M of the nucleotides on the denatura-
tion process. Since the kinetic and the potential terms of
the Hamiltonian quantum model do not commute with
each other we shall expect that M is an important param-
eter in the melting dynamics. This should be contrasted
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with the classical model where the kinetic energy cancels
out against the normalization in the expression for the
correlation of interest. Because of this, the two versions
of the model should be distinguished.

To treat the problem, we focus on an important feature
of the Morse potential: it is a bounded asymmetric po-
tential with a finite number of bound states. From this,
we can argue that (i) for T <7, the system necessarily
presents itself in a state which is not invariant with
respect to translations along the direction of the H bonds,
and (ii) the asymmetry produces a shift on the equilibri-
um positions of the constituting particles. With regard to
these, our treatment is not restricted to the Morse poten-
tial since any other potential presenting these properties
and satisfying the same physical-chemical requirements
could be equally considered. We choose the same poten-
tial as in Ref. [2] in order to compare the classical and
quantum results.

In the limit of N— o, N being the total number of
particle pairs, we characterize the denaturation process
as a phase transition leading to a restoration of the
translational invariance of the system along the direction
of the H bonds. In the present case it corresponds to a
situation of two mutually noninteracting chains of har-
monic oscillators. When applied to the expression for G,
the Green’s function of interest, the symmetry restoration
requirement leads to an analytical expression for T, as a
function of all model parameters. When compared to the
classical results, the presence of M in this expression
leads to a dramatic change in fixing the remaining param-
eters to fit T, on experimental values.

The calculation of G is accomplished here through a
modified perturbative theory in which we distinguish two
regions of momentum integration whose associated pro-
cesses (in terms of phonon interactions) play quite
different roles in the melting transition. The region of
high momentum transfer is treated perturbatively since it
corresponds to small displacements of the particles (nu-
cleotides) from their equilibrium positions. On the other
hand, the region of low momentum transfer, which is
characterized by processes involving large displacements
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of the particles, cannot, in principle, be accounted for by
a perturbative approach. Near the critical temperature
large displacements are in fact important and their con-
tributions to the dynamics of the system cannot be
neglected.

Qualitatively, the main difference between the contri-
butions from these two regions lies in the fact that a par-
ticle in thermal equilibrium subjected to “large” displace-
ments under a Morse potential (or any other presenting a
certain degree of anharmonicity) effectively changes its
equilibrium position with variations of temperature [4].
Because (as we assume here) during the denaturation the
neighboring nucleotides in the same strand remain con-
nected by harmonic forces, the change on the equilibrium
position of each of these particles along the direction of
H bonds leads to a corresponding shift of the whole
strand relatively to its initial position (at 7 =0). For
small displacements of the particles, this effect is negligi-
ble.

This suggests that we account for the contributions to
the melting from both regions of momentum transfer by
Fourier analyzing the displacement y; of the particle pair
j along the direction of the H bonds with respect to
its  initial equ111br1um position R; as y;=u
+(1/V' N )3 vie R (See Sec. II for details). With this,
the low-momentum- transfer processes are accounted by
the random variable u which describes explicitly the shift
on the equilibrium position of the whole chain. Accord-
ingly, these nonperturbative processes are incorporated
into the perturbative series for G by parameterizing them
through the expectation values (u ) and {uu )¢, the first
and second cumulants, respectively, of the u-distribution
function, which is, in principle, unknown. We should
mention that this procedure resembles Wilson’s operator
product expansion [5(a)] as applied to quantum chromo-
dynamics [5(b)].

Quantitatively, the distinction between high and low
momenta in the course of the G calculation is done by in-
troducing a scale @, into the theory that restrains in-
tegration over low momentum in the perturbative region,
so that it becomes infrared divergent free. We estimate
this scale by a variational method suggested by Feynman
[4].

An expression for G is obtained by resuming an infinite
number of Feynman’s diagrams belonging to certain
classes. These diagrams representing the terms of the
modified perturbative series proposed above are accom-
panied by corresponding factors of (u ) and (uu)‘. A
subsequent use of Dyson’s equation allow us to write G as
G ~[(MB)w? +y12,—i—A)]_1 in the momentum represen-
tation. For A=0 it coincides with G, the free-phonon
Green’s function. It follows that a natural characteriza-
tion of the melting transition comes from the condition
A=0at T=T,. The “gap” A is a function of all model
parameters; besides, it is also a function of {u ), (uu )¢,
and B=1/kyT. The critical temperature T, and {u ) at
T=T,ie., (u )T , are determined by solving the follow-
ing equations at the critical point: (a) a self-consistent

equation (SCE) established for A by considering all self-
similar insertions into the diagrams mentioned above and
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(b) an equation derived from the minimization of the total
free energy F of the system with respect to {u):
(3F /3{u ))=0. Additional physical considerations re-
quire that {(uu )*=0at T,.

In Sec. IT we present the model of Ref. [2] and outline
the modified perturbative approach proposed here. The
SCE for A, the total free energy of the system, and the
final expression for T, are derived in Sec. III. We discuss
our results in Sec. IV.

II. OUTLINES
A. Model

The model Hamiltonian proposed by Peyrard and
Bishop [2] describing the DNA molecule is given by (we
use the same notation as in [2])

H= 2 (LM (a2 402)+ 1K [(u,—u, )
n=1
+(Un—vn~l)2]
+V(u,—v,)} (1)
where
V(u,—v,)=D{exp[ —a(u 21132 (2)

is the Morse potential describing the H bonds that con-
nect the complementary nucleotides in pairs.

In (1), u, is the displacement of the particle n from its
equilibrium position in one of the two strands and v, is
the corresponding variable for the complementary parti-
cle on the other strand. Both u, and v, describe the
movements of the particles along the direction of the H
bonds. As noted by the authors, it is not necessary to
consider other polarizations in modeling the DNA in or-
der to study the denaturation phenomenon, for they
would be factorized and subsequently canceled out by re-
normalization in calculating averages of the variables u,
and v,. A common mass M and spring constant K are
used for all particles (nucleotides). _

As also noted in [2], by defining x, =(u, +v, )/V'2 and
y,=(u,—v, )/V'2, the Hamiltonian (1) is decoupled as
H=H(x)+H(y), where

H(y)=H,y)+V(y), (3)
Py 1
_ n 1 _ 2 _ .
HO(y) % 2M+ 2K(yn yn—l) s> Pn Myn ’ (4)
V(y)=D 3 {exp[—aV2y,]—1}2. (5a)

It shall be convenient for what following to write V as a
series expansion:

V(y)=D3 Z

n p=2

[(2\/§ayn Y—2(V2ay, ] . (5b)

Hy(x) and H(y) describe, respectively, the in-phase
and out-of-phase relative displacements for the pair of
particles from their equilibrium positions. For the pur-
pose of studying the melting of the H bonds, H(x) is ir-
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relevant. Accordingly, there is no loss of generality in re-
stricting the analysis to the chain described by H (y).

B. Modified perturbative theory

As mentioned above, the effective shift of the relative
equilibrium position of the strand is considered here
through the introduction of an auxiliary temperature-
dependent random variable u modifying the standard
Fourier transformation for the variables y,’s as

kR, /b

T3 K@) ©)

ylo)—u=y,(o)=

where o =it has dimension of B=1/kyT;, kp is the
Boltzmann constant, and T is the temperature of the sys-
tem. N is the total number of nucleotides on the strand, b
is the latice constant, and k=wl/N,
=—N,—N+1,...,0,...N, assuming periodical bound-
ary conditions. R, is the equilibrium position of the nth
particle on the strand.
Note that, although the modes with k%0 are not
modified by the introduction of u in (6), the zero mode
obeys

1 —_—
— -V . (7

~ % Yn Nu
From this, we shall assume that all v;’s, including k =0,
account for symmetric fluctuations of the chain around
its equilibrium position stated by u.

According to the second quantization formahsm the
normal modes v; are written in terms of creation bk and
annihilation b, operators for free phonons [6]:

G;= (Tlyi(

The thermal averages above are defined by (& ),=Tr[exp(—BH,)3]/Tr[exp(

1

W[hl(awbk(a)] ; (8)
k

velo)=

172

W=

9

%(l—cosk)

In (9), # and the lattice constant were set equal to the uni-
ty. Using (6) and (8), and apart from terms involving #
which in principle can be incorporated to V(y), the free
Hamiltonian H in (4) becomes

Hy=S w,(bib+1). (10)
k

The quantity to be examined here in order to obtain in-
formation on the melting transition is the temperature
Green’s function defined by

G,-j(a)=(‘T[j:'i(a)j)”j(O)]> (11)
where 7 is the “time”-ordering operator and

(9)= Trie ™ 315‘[

Tr{e P}

is the thermal average of the operator .
A measure of the fluctuations on the characteristic dis-
tance between the originally paired particles is given by

limOG,-i((T) . (12)

The standard perturbative expansion for G;;(o ) is written
as [6,7]

)7,(0)]o— ( | [ 7 mior9;00 )d01]>0+ < FC AR R AT ]>+

(13)

—PBH,)] for H, as in (10). ¥ is a gen-

eric perturbation. The first term on the right-hand side (rhs) of (13) is the free-phonon-temperature Green’s function [6]

(T(y,(0)5;(0)1)o=Go)=

f+7rdk ik(R; R)2 zyp GO),u,

)) -

In replacing the sum by the integral over k in the expression above, the limit N — o was taken. u,=2mp /f3 for

p=0,+1,+2, .. are the Matsubara’s frequencies and

1

GOy =—— .
T MBY o))

(14)

For considering other terms in (13), some remarks are in order. Because the free part of the theory whose dynamics
is set by H, presents an infrared divergence, it does not allow for perturbations from processes involving low momen-
tum transfer. Consequently, in choosing ¥V [expression (5b)] as ¥ in (13), we should select from the whole set of process-
es contained in each term in this series only those involving high momentum transfer. Instead, in order to account also
for the nonperturbative processes, we modify expression (13) as follows:

6y = T30 @ — (T [ [ Vi 50,00, | )+ 5 (7[sla0.s; ldo,V(o V(om0 | )+ -
(13"
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The thermal averages indicated above are defined by
UN=CO e

where ( )(,) acts only on the nonperturbative part taking
thermal averages of products of operators u calculated
with the u-distribution function while ¢ )([)wo] acts only on
the perturbative part taking thermal averages of opera-
tors v, calculated with (10) and subjected to the infrared
cutoff w,, which shall be introduced into the theory to
restrain integration over low momentum in this region.

Besides, as long as the anharmonicities exhibited by the
Morse potential do not play an important role in the re-
gion of high momentum, we believe that it is sufficient to
consider for the perturbative part only processes originat-
ed from the quadratic and quartic terms in v,. More-
over, we restrict our calculation in this region up to the
second term in (13'). In terms of Feynman’s diagrams,
these perturbative processes can be represented by the
“skeleton diagrams” as in Fig. 1.

Contributions from the processes involving low
momentum transfer are accounted for through the vari-
able u; for this region all (infinite) terms on the rhs of ex-
pression (5b) are equally considered in the calculation.
To be more precise, each term in (5b) is Fourier analyzed
according to (6). This provides a set of terms containing
products of v;’s and #’s. From these, we keep only those
containing quadratic and quartic terms in v, the remain-
ing factors being of the u component. For the perturba-
tive part in each of these selected terms, i.e., for the fac-
tors in vy, the thermal averages are taken using (10). For
the nonperturbative part, i.e., for the products in u,
thermal averages should in principle be taken using the
u-distribution function. However, because we are not
able to determine this function here, we approximate
each of these u averages by its cumulant expansion up to
first (u ) and second {uu ) cumulants:

m m
1 (u) |11 (uu)e |°
m ~m!
G y=m maz m! | 1 myl | 2!
><8m1+2n12,m (15)

where m, m, and m, are integers.

Subsequently we let {(u) and (wuu)¢ act as T-
dependent parameters of the theory. At the critical
point, {u ) is obtained through the minimization of F,
the total free-energy of the system (which can be obtained

k D k k D k

(a) (b)

FIG. 1. Skeleton diagrams representing perturbative process-
es (first order in the parameter D). (a) Quadratic terms in v;; (b)
quartic terms in vy.

.
x
+« *
X
k D k k D k
() (b)

FIG. 2. Skeleton diagrams modified by the nonperturbative
processes— Xsignals the presence of a u operator.

through G), with respect to this parameter:
(0F /3{u ))p—7 =0. Since nonperturbative processes
take place onlycfor T <T,, the random variable u shall
assume a definite value at the critical point. This set the
condition uu )*=0at T=T,.

From this whole procedure, the second term on the rhs
of (13') can be represented as a sum over infinite dia-
grams, all of them determined by the same (perturbative)
skeletons. They differ from each other by the corre-
sponding ““insertions” of {u ) and {uu )‘. Examples of
these “modified diagrams” are in Fig. 2.

Because the perturbative part is the same for all of
these diagrams, it factorizes for each skeleton case. We
are then able to recuperate in a certain sense the specific
features of the Morse potential through the nonperturba-
tive part of the problem by summing up all of the above-
mentioned diagrams. This calculation involves a com-
binatorial computation to account for all factors of {u )
and wuu )¢ derived from (15) for each diagram. The final
expression for the second term on the rhs of (13’) is then
expressed as a sum over two terms: one relative to the
skeleton represented in Fig. 1(a) and the other to the one
in Fig. 1(b).

Next, we show in more detail how these ideas work
and obtain the final expression for G. This expression in
turn reveals very clearly the conditions for melting.
From the analysis of these conditions which involve the
limiting values for (u ) and {uu )¢ at the critical point,
we obtain T,.

III. GREEN’S-FUNCTION CALCULATION
AND THE MELTING
TRANSITION CHARACTERIZATION

According to the proposal above, the Morse potential
V is expanded in powers of the displacements y, as in
(5b). With this, the second term on the rhs of (13’) can be
written as

) aV?2 had
Gyo)==p [ da [ dy 3 Gjlo), 1o
iz
Y
Gi‘}(a)—gfodal;[*(a+y)]q

X Lyi o )yio)p; 0N, (17)

where a and y are auxiliary variables introduced here to
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facilitate the resummation of the terms in (16).

All of the y’s in (17) should now be Fourier analyzed as
in (6). For practical purposes, however, in order to select
the terms in (17) containing quadratic factors in v, we
proceed with the computation by counting all possibili-
ties of selecting two distinct operators y, from the total
of (2+gq)y,’s and write them in the phonon representa-
tion. Along with y; and y; (also in terms of b, and b,I )y
these selected operators give rise to the external legs of
the corresponding diagrams. For the remaining gy,’s we
take only the u component. After approximating the

J

S=4aZ[(2e4a2(uu)C_eaz(uu)c)+(2e—Zﬁa(u>_e—\/5a(u)_1)]+§ ,

2€u)
Vi uu )*

1 (u)

22 V{uu )©

(u)?

2 c
4a*Cuu ) +2(uu>“

S=4q2 erfc[z]exp

+4a? erfc[z /2 ]exp

where
erfc[z]= f oodp e P’
and

z=2aV {uu )+ % .
2V (uu )¢
For the quartic terms in the perturbative part, four y,’s
should be initially selected among the total of (2+¢q)y,,’s.
In this case, we obtain the result

21

GlP=S,[G/"o) AL (22)
where
442 2 c 2 c S
S, = 2e%a (uu) —ed (uu) —11+ . (23)
B (uu )c[ ] (uu)*

In (22) L expresses the contribution from the integra-
tion over the internal loop momentum of Fig. 1(b). Using
the expressions above we write G in the momentum rep-
resentation, up to first order in the parameter D, as

Gy (p,)=G{(u,)—BD(S +S, LI G"(u,)]* . (24)

The use of Dyson’s equation now allows us to write the
final expression for G as

1

G (u,)= (25)
CE T MBE + 0l +A)
where the gap function A is defined by
A=L2(s+s,0). (26)
M

Conclusions on the melting transition are obtained
here by analyzing A. First, we note that a SCE for this
quantity can be established by replacing the free-phonon

2a%Cuu )+
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thermal averages of the u products by their cumulant ex-
pansions as in (15), and performing the sum over g (which
involves a quite extensive combinatorial computation)
and the integrals over a and y indicated in (16), we ob-
tain
G[PH(o)=S[GP(a)]? (18)
where the first superscript in G indicates as before the or-

der of the term in (13) and the second corresponds to the
number of factors vy.

(19)
_‘/Ee—Zl/Ea(u)]
(u)? 1 —V3a(u)
+ alu 20
4Cuu )¢ ] % 20

propagator occurring in the loop by the “dressed propa-
gator” (25). In fact, with this substitution and after sum-
ming over the Matsubara’s frequencies, the loop factor £
becomes

1 1

L(A,ﬁ)‘i‘m‘ dk 20, coth(BQ, /2) 27
where
Q, =[(2K /M)(1—cosk)+A]'2 . (28)

The prime to the integral symbol indicates that integra-
tion over low momentum should be avoided. We approx-
imate (27) by

1 4K /M dx
L(AB)~—— :
AB=~Tor )y x FAK Mk —x2] 7

(29)

The expression above is obtained from (27) by approxi-
mating coth(BQ, /2) by (8Q, /2)"! and by changing the
variable of integration. Moreover, we introduce a cutoff
w, for the frequencies. (26) and (29) define the SCE for A.

At T=T, we expect that the two original chains of
harmonic oscillators decouple from each other meaning
that G should coincide with G‘©’ at the critical point. In
view of the form of G in (25), the condition that estab-
lishes the melting transition is

A=0 at T=T,, (30)

which corresponds to a translational invariant state of
the system (note that the free Hamiltonian H,, is invari-
ant under the transformation: y;,—y;+§& where £ is a
time-independent parameter).

We shall then look for solutions for T in the SCE for
A=0. This also requires the values for w, (u) and
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(uu )¢ at the critical point. We had already mentioned
that {uu )°=0 at T =T,. The other two parameters will
be fixed as follows.

(i) wy- In order to estimate w, we focus on the “zero-
mode” movement (i.e., the displacements of the chain as
a whole from its equilibrium position) neglecting for a
while its interaction with the fast modes. As explained
before, this is equivalent of studying the movements of
just a single particle under a Morse potential (5). The
solution to this problem presents a finite number of
bounded states [8]. On the other hand, as suggested by
Feynman [4], for a system in thermal equilibrium subject-
ed to any bounded potential ¥ (z), a suitable replacement

_r> _p Moy

H 2M+V(z)—>Ho it 2 (z—A(z)) (31
is possible since the (temperature-dependent) parameters
o and (z) are obtained from (a) { ¥’'(z)),=0, ensuring
that the force acting on the particle vanishes at the equi-
librium position; and (b) {zV'(z)),={p2/M),, by the
Virial’'s theorem. These conditions provide the best
quadratic approximation for the original Hamiltonian. If
we take V(z) as the Morse potential (5a), equations (a)
and (b) provide

MB —1/2

o~ |22 , (32a)
2q? a

eX~8(aD)* B /M (32b)

for Bw/2 << 1. Here g=(2V'2/3)a{z).
We estimate w,, as the minimum value for w, i.e., @y,
for which a solution to the Eqgs. (32a) and (32b) exists:
W=~ (32a*D /V'e M?)!/? (33)
for

(z)=~3V2/8a, B=~[(2aD)*/eM]™'/? . (34)

We note that (33) and (34) are limiting values for the cor-
responding parameters for which the particle remains
bounded.

Using result (33) and taking A=0 in (29), we obtain

1 =

=~ VR —

L mBK R—1 (35)
with

R=4K/M)/w} . (36)

(ii) (u) at T=T,. We estimate (u) at the critical
point, i.e., {u ) ; by minimizing the total free energy F of
the system described by H (y) with respect to this param-

eter. F can be calculated using the Green’s function (25)
through [6]

— . _A{ ld)\. iy,pa
F=Fo+ lim == [ 5= fdk§(M)Gk<x,yp)e
for

Gy (A, )= L
T MBE o} +AA)
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It results in

=% [ dk nsinh(BQ, /2) . (37)
We take
oF _ _
a(u>—0 at T=T, . (38)
Using the SCE (26), Eq. (38) can be written as
aS as,
a<u)+“£a(u)"0' (39)

We use expressions (19) and (23) for S and S, respec-
tively, to calculate the derivatives above at the critical
point, i.e., we set A=0 and take the limit for {uu )°—0.
It follows from (39) that

— 2 L(A=0,8)-VZ|=0  @0)
7T<u >Tc

t.(4t,—1)
with
t,=exp(—V2a(u ’r)
As a physical solution for the above equation, we choose

=% @1)

which implies that {u ) r,=a -1

Introducing this value for (u >Tc into the SCE for
A=0 and taking again the limit { uu )°—0, we obtain the
following expression for T,:

7K
28a?

1
vVR—1"

T,

1
> “2)

IV. DISCUSSION

Analyzing the expression obtained for G, (u, ), Eq. (25),
the denaturation phenomenon could be characterized
here (in the limit N — ) as a phase transition leading to
the restoration of the translational invariance of the sys-
tem. In fact, the condition A=0, shown to be satisfied at
a finite temperature T, allows for the possibility for the
chain described by H (y) to execute arbitrary large dis-
placements along the direction of the H bonds. This pos-
sibility is manifested through a divergent behavior of the
mean quadratic deviation:

ik(R;—R;)

yH=6;= f_” dk 3 Gi(p,)e 43)
T p

i=j

For any A0 the integral above gives a finite value for
(y2). For A=0, however, this quantity presents an in-
frared divergence. The very fact that we could obtain a
finite solution for T, for A=0 supports some experimen-
tal results suggesting that the DNA helix melting occurs
as a sharp transition [9]. The passage from A0 to A=0
indicates the occurrence of a transition from a bound
state of the strain to a free state. For a complete study of
the transition, however, an analysis of the stability of the
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solution A=0 to the SCE (26) would be desirable.

It is important at this point to call attention to the hy-
potheses involved in our approach. (i) We assume that
the fast modes can be distinguished from the slow modes
defining in this way two distinct regions of phonon mo-
menta. (ii) In the perturbative region, we approximate
the Morse potential by a few terms of its expansion in
powers of the displacements (only the terms in 2 and
74 are considered). In this approximation, we neglect,
for instance, phonon decay processes. (iii) Although in
the nonperturbative region all powers of the above series
are considered in the calculation, only the first and
second cumulants are taken for approximating average of
powers of the variable u. (iv) Finally, motivated by the
necessity of defining quantitatively the separation be-
tween the two regions of momenta, we introduce a scale
®g, which we assume can be determined by focusing on
the slow modes alone.

The first three hypotheses seem quite reasonable within
the context of the problem studied. The fourth one in-
volves necessarily an external input to the model since it
does not provide us with a natural scale. The fact that we
are able to establish here such a scale by choosing one
particular (external) criterion does not rule out other pos-
sibilities. We should note, however, that, since o, sets up
dependences of T, on parameters of the model, one can
check the reliability of this particular choice on experi-
mental grounds. For example, it would be interesting to
investigate specifically the dependence of T, on the mass
parameter M. Here we obtain that T.~M /¢ for
R >>1. For the other parameters, the dependence shown
in expression (42) is as one should expect from simple
physical considerations. Concerning M it is interesting to
observe that since for a classical system [y,,7,]=0, one
should not expect in this case that results for {7 ?) would
carry a dependence on M because in calculating this aver-
age, the kinetic term cancels out against the normaliza-
tion factor. For the quantum case this does not happen,
of course. From a physical point of view, we do expect
that the masses of the particles involved play some role in
the transition which in turn should be expressed through
T..
All nonperturbative contributions are expressed
through S and S;. Their functional dependences on {u )
and (uu )¢ reflect the particular way by which, in the
context of this model, the fast modes interact with the
slow modes in the process of melting. A remark is in or-
der here: had we set {uu )°=0 since the beginning of the
calculation, instead of taking the limit (uu )°—0 at
T =T,, we would not have obtained a meaningful result
for T, in the limit of N— . This fact expresses the
necessity of considering at least two parameters for
representing the nonperturbative contributions in this
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case. The shift on the equilibrium positions can only be
accomplished by high-order phonon processes occurring
in the nonperturbative region. Because these have an in-
trinsic statistical character it explains the necessity of
considering u as a random variable. Hence, before the
transition takes place, { uu )°#O0.

Finally, we analyze the possibility for obtaining a nu-
merical value for T, from expression (42) compatible with
the experimental range of values for melting temperature
in the DNA molecule [3]. We use the same values for the
parameters of the Morse potential as suggested in Ref.
[2: a=1.8 A ! and D =0.33 eV. For M, we choose
M =3.0X10" eV (=325 amu). We variate the spring
constant K within the range of values allowed by the con-
dition R > 1 (i.e., K > Mw}/4). This is a necessary con-
dition for the existence of a perturbative region in which
1ntegral (29) is performed. We found that for K =10
eV A 72 the critical temperature approaches to the exper-
imental values. This value for K should be compared with
the result obtalned in Ref. [2] for the classical case; there,
K~3X10"%eVA 2, Recently, another set of values for
the model parameters were suggested in Ref. [10] includ-
ing that for the spring constant K =0.06 eVA 2
D =0.04 eV, and a =4.45 A . Unfortunately, they do
not satisfy the condition above with @ and D we use ex-
pression (33) to calculate 03=10"° eV?, implying that
K >0.2 eVA 2 However, as we have already men-
tioned, other choices for fixed w, are possible, e.g., multi-
plying the rhs of (33) by a numerical constant might lead
to a compatible condition R > 1 even for values of K as in
[10]. Nevertheless, we believe that the particular func-
tional relationship among the model parameters obtained
in (42) distinguishes the corresponding analysis for the
classical and quantum versions of the model. It would be
desirable if such a relationship could be checked by ex-
periments.

Note added. After the present work was completed, we
became aware of another paper treating the Peyrard-
Bishop model where the Morse potential was replaced by
V(u)=21Bu 2—Cyu3 [F. Pitici and S. Svirschevski, Phys.
Rev. A 44, 8348 (1991)]. Using a mean-field approach,
the authors also looked for a translational invariant state
of the system; however, they found a strong dependence
of T, on the number of particles N.
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